Rab GTPases and microtubule motors.

نویسندگان

  • Conor P Horgan
  • Mary W McCaffrey
چکیده

Rab proteins are a family of small GTPases which, since their initial identification in the late 1980s, have emerged as master regulators of all stages of intracellular trafficking processes in eukaryotic cells. Rabs cycle between distinct conformations that are dependent on their guanine-nucleotide-bound status. When active (GTP-bound), Rabs are distributed to the cytosolic face of specific membranous compartments where they recruit downstream effector proteins. Rab-effector complexes then execute precise intracellular trafficking steps, which, in many cases, include vesicle motility. Microtubule-based kinesin and cytoplasmic dynein motor complexes are prominent among the classes of known Rab effector proteins. Additionally, many Rabs associate with microtubule-based motors via effectors that act as adaptor molecules that can simultaneously associate with the GTP-bound Rab and specific motor complexes. Thus, through association with motor complexes, Rab proteins can allow for membrane association and directional movement of various vesicular cargos along the microtubule cytoskeleton. In this mini-review, we highlight the expanding repertoire of Rab/microtubule motor protein interactions, and, in doing so, present an outline of the multiplicity of transport processes which result from such interactions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rab11 in Disease Progression

Membrane/ protein trafficking in the secretory/ biosynthetic and endocytic pathways is mediated by vesicles. Vesicle trafficking in eukaryotes is regulated by a class of small monomeric GTPases the Rab protein family. Rab proteins represent the largest branch of the Ras superfamily GTPases, and have been concerned in a variety of intracellular vesicle trafficking and different intracellular sig...

متن کامل

Ankyrin-B is a PI3P effector that promotes polarized α5β1-integrin recycling via recruiting RabGAP1L to early endosomes

Endosomal membrane trafficking requires coordination between phosphoinositide lipids, Rab GTPases, and microtubule-based motors to dynamically determine endosome identity and promote long-range organelle transport. Here we report that ankyrin-B (AnkB), through integrating all three systems, functions as a critical node in the protein circuitry underlying polarized recycling of α5β1-integrin in ...

متن کامل

Rab proteins, connecting transport and vesicle fusion.

Small GTPases of the Rab family control timing of vesicle fusion. Fusion of two vesicles can only occur when they have been brought into close contact. Transport by microtubule- or actin-based motor proteins will facilitate this process in vivo. Ideally, transport and vesicle fusion are linked activities. Active, GTP-bound Rab proteins dock on specific compartments and are therefore perfect can...

متن کامل

Rab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila

In eukaryotes, vesicle trafficking is regulated by the small monomeric GTPases of the Rab protein family. Rab11, (a subfamily of the Ypt/Rab gene family) an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In an earlier communication, we have shown th...

متن کامل

The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors

Many intracellular compartments, including MHC class II-containing lysosomes, melanosomes, and phagosomes, move along microtubules in a bidirectional manner and in a stop-and-go fashion due to the alternating activities of a plus-end directed kinesin motor and a minus-end directed dynein-dynactin motor. It is largely unclear how motor proteins are targeted specifically to different compartments...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 39 5  شماره 

صفحات  -

تاریخ انتشار 2011